The effect of prosthetic ankle energy storage and return properties on muscle activity in below-knee amputee walking.
نویسندگان
چکیده
In an effort to improve amputee gait, energy storage and return (ESAR) prosthetic feet have been developed to provide enhanced function by storing and returning mechanical energy through elastic structures. However, the effect of ESAR feet on muscle activity in amputee walking is not well understood. Previous studies have analyzed commercial prosthetic feet with a wide range of material properties and geometries, making it difficult to associate specific ESAR properties with changes in muscle activity. In contrast, prosthetic ankles offer a systematic way to manipulate ESAR properties while keeping the prosthetic heel and keel geometry intact. In the present study, ESAR ankles were added to a Seattle Lightfoot2 to carefully control the energy storage and return by altering the ankle stiffness and orientation in order to identify its effect on lower extremity muscle activity during below-knee amputee walking. A total of five foot conditions were analyzed: solid ankle (SA), stiff forward-facing ankle (FA), compliant FA, stiff reverse-facing ankle (RA) and compliant RA. The ESAR ankles decreased the activity of muscles that contribute to body forward propulsion and increased the activity of muscles that provide body support. The compliant ankles generally caused a greater change in muscle activity than the stiff ankles, but without a corresponding increase in energy return. Ankle orientation also had an effect, with RA generally causing a lower change in muscle activity than FA. These results highlight the influence of ESAR stiffness on muscle activity and the importance of prescribing appropriate prosthetic foot stiffness to improve rehabilitation outcomes.
منابع مشابه
The effects of prosthetic ankle dorsiflexion and energy return on below-knee amputee leg loading.
BACKGROUND Prosthetic devices are intended to return lower limb amputees to their pre-amputation functional status. However, prosthetic devices designed for unilateral below-knee amputees have yet to completely restore the biomechanical functions normally provided by the ankle muscles, leading to gait asymmetries and increased reliance on their intact leg. In an effort to improve amputee gait, ...
متن کاملThe influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
BACKGROUND Below-knee amputees commonly experience asymmetrical gait patterns and develop comorbidities in their intact and residual legs. Carbon fiber prosthetic feet have been developed to minimize these asymmetries by utilizing elastic energy storage and return to provide body support, forward propulsion and leg swing initiation. However, how prosthetic foot stiffness influences walking char...
متن کاملOptimization of prosthetic foot stiffness to reduce metabolic cost and intact knee loading during below-knee amputee walking: a theoretical study.
Unilateral below-knee amputees develop abnormal gait characteristics that include bilateral asymmetries and an elevated metabolic cost relative to non-amputees. In addition, long-term prosthesis use has been linked to an increased prevalence of joint pain and osteoarthritis in the intact leg knee. To improve amputee mobility, prosthetic feet that utilize elastic energy storage and return (ESAR)...
متن کاملMuscle and prosthesis contributions to amputee walking mechanics: a modeling study.
Unilateral, below-knee amputees have altered gait mechanics, which can significantly affect their mobility. Below-knee amputees lose the functional use of the ankle muscles, which are critical during walking to provide body support, forward propulsion, leg-swing initiation and mediolateral balance. Thus, either muscles must compensate or the prosthesis must provide the functional tasks normally...
متن کاملAltering prosthetic foot stiffness influences foot and muscle function during below-knee amputee walking: a modeling and simulation analysis.
Most prosthetic feet are designed to improve amputee gait by storing and releasing elastic energy during stance. However, how prosthetic foot stiffness influences muscle and foot function is unclear. Identifying these relationships would provide quantitative rationale for prosthetic foot prescription that may lead to improved amputee gait. The purpose of this study was to identify the influence...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Gait & posture
دوره 33 2 شماره
صفحات -
تاریخ انتشار 2011